XRARE-Mississippi-Valley-Foremanizing-Co-Illinois-Stock-Certificate-1870-Signed-01-ttqg

XRARE- Mississippi Valley Foremanizing Co Illinois Stock Certificate 1870 Signed

XRARE- Mississippi Valley Foremanizing Co Illinois Stock Certificate 1870 Signed
XRARE- Mississippi Valley Foremanizing Co Illinois Stock Certificate 1870 Signed
XRARE- Mississippi Valley Foremanizing Co Illinois Stock Certificate 1870 Signed
XRARE- Mississippi Valley Foremanizing Co Illinois Stock Certificate 1870 Signed
XRARE- Mississippi Valley Foremanizing Co Illinois Stock Certificate 1870 Signed
XRARE- Mississippi Valley Foremanizing Co Illinois Stock Certificate 1870 Signed

XRARE- Mississippi Valley Foremanizing Co Illinois Stock Certificate 1870 Signed
VERY RARE Old Stock Certificate Document. Mississippi Valley Foremanzing Co. EXTREMELY RARE – I could not Locate another one. For offer, a nice old piece of ephemera. Fresh from a prominent estate in Upstate, NY. Never offered on the market until now. Vintage, Old, Original, Antique. A Reproduction – Guaranteed! This was found in old papers from a local estate. I could not find anything about this company. I did find that around this time, the formanizing process of wood preserving quickly went out of business because it was very hazardous. So, the company was formed and went nowhere. The process in this case, was to be used to preserve the wood of the steamships. Revenue stamp, embossed seal, etc. Signed by president John / Jonathan P. And signed on back by M. At bottom edge: Hildreth, Printer and Stationer, St. In very good condition. Fold / crease marks. NOTE: Will be sent folded, as found unless otherwise discussed. If you collect 19th century American history, Americana transportation, RR train locomotive, etc. This is nice one for your image or paper / ephemera collection. Louis is a city in St. Clair County, Illinois, United States. It is directly across the Mississippi River from Downtown St. Louis, Missouri and the Gateway Arch National Park. It is a suburb of St. Louis is in the Metro-East region of Southern Illinois. Once a bustling industrial center, like many cities in the Rust Belt, East St. Louis was severely affected by the loss of jobs due to industrial restructuring during the second half of the 20th century. In 1950, East St. Louis was the fourth-largest city in Illinois when its population peaked at 82,366. As of the 2020 census, the city had a population of 18,469, less than one-quarter of the 1950 census and a decline of almost one third since 2010. A recent addition to the city’s waterfront is the Gateway Geyser. On the grounds of Malcolm W. Martin Memorial Park, the fountain is the second-tallest in the world. Designed to complement the Gateway Arch across the river in St. Louis, it shoots water to a height of 630 feet (190 m), the same height as the arch. Native Americans had long inhabited both sides of the Mississippi River. The Mississippian culture rulers organized thousands of workers to construct complex earthwork mounds at what later became St. Louis and East St. The center of this culture was the urban complex of Cahokia, located to the north of present-day East St. Louis within Collinsville, Illinois. Before the Civil War, settlers reported up to 50 mounds in the area that became East St. Louis, but most were lost to 19th-century development and later roadbuilding. Louis lies within the fertile American Bottom area of the present day Metro-East area of St. The village was first named “Illinoistown”. Louis was founded in 1797 by Captain James Piggott, a Revolutionary War veteran. In that year Piggott began operating a ferry service across the Mississippi River, connecting Illinoistown with St. Louis, which had been founded by ethnic French families. Louis County and remarried. One of the Piggotts’ great-great-granddaughters became known as actress Virginia Mayo (Virginia Clara Jones). The municipality called East St. Louis was established on April 1, 1861. Illinoistown residents voted on a new name that day, and 183 voted to rename the town East St. Though it started as a small town, East St. Louis soon grew to a larger city, influenced by the growing economy of St. Louis, which in 1870 was the fourth-largest city in the United States. Great Railroad Strike of 1877. Main article: Great Railroad Strike of 1877. A period of extensive industrial growth followed the American Civil War. Industries in East St. Louis made use of the local availability of Illinois coal as fuel. Another early industry was meatpacking and stockyards, concentrated in one area to limit their nuisance to other jurisdictions. In the expansion, many businessmen became overextended in credit, and a major economic collapse followed the Panic of 1873. This was due to railroad and other manufacturing expansion, land speculation, and general business optimism caused by large profits from inflation. The economic recession began in the East and steadily moved West, severely crippling the railroads, the main system of transportation. In response, railroad companies began dramatically lowering workers’ wages, forcing employees to work without pay, and cutting jobs and paid work hours. While most of the strikes in the eastern cities during 1877 were accompanied by violence, the late July 1877 St. Louis strike was marked by a bloodless and quick take-over by dissatisfied workers. By July 22, the St. Louis Commune began to take shape, as representatives from almost all the railroad lines met in East St. They soon elected an executive committee to command the strike and issued General Order No. John Bowman, the mayor of East St. Louis, was appointed arbitrator of the committee. He helped the committee select special police to guard the property of the railroads from damage. The strike and the new de facto workers’ government, while given encouragement by the largely German-American Workingmen’s Party and the Knights of Labor (two key players in the organization of the Missouri general strike), were run by no organized labor group. The strike also closed packing industry houses surrounding the National Stock Yards. At one plant, workers allowed processing of 125 cattle in return for 500 cans of beef for the workers. Though the East St. Louis strike continued in an orderly fashion, across the river in St. Louis there were isolated incidents of violence. Harry Eastman, the East St. Louis workers’ representative, addressed the mass of employees. Go home to your different wards and organize your different unions, but don’t keep coming up here in great bodies and stirring up excitement. Ask the Mayor, as we did, to close up all the saloons… Keep sober and orderly, and when you are organized, apply to the United Workingmen for orders. Don’t interfere with the railroads here… Let us attend to that. The strikers held the railroads and city for about a week, without the violence that took place in Chicago and other cities. The federal government intervened, and on July 28 US troops took over the Relay Depot, the Commune’s command center, and the strike ended peacefully. Great Cyclone of 1896. Main article: 1896 St. On May 27, 1896, a tornado struck St. It stands as the deadliest tornado to ever hit the cities. In approximately 20 minutes, this tornado resulted in destruction that killed 137 people in St. Louis and 118 in East St. The tornado’s destruction spanned 10 miles, including into the railyards and commercial districts of East St. During the storm, 311 buildings were destroyed and 7,200 others were severely damaged. Louis riots of 1917. Main article: East St. Louis in 1917 had a strong industrial economy boosted by America’s economic participation in demands related to World War I; although war was declared in April, the nation did not meaningfully enter the war until that fall. Industry was dominated by European immigrant workers, who had been coming to industrial cities since the late 19th century. Here and across the country, they repeatedly tried to organize in efforts to gain better wages and working conditions. In the summer of 1916, 2,500 white workers struck the nearby meat packing plants of National City. Companies recruited black workers, sometimes importing them from the South. While the white workers won a wage increase, the companies retained some black workers, firing white ones. Such economic competition raised tensions between the groups in a period when the number of blacks in East St. Louis had increased dramatically due to the first Great Migration, when African Americans left poor rural areas of the South to escape Jim Crow oppression and seek jobs in the industrial cities of the North and the Midwest. From 1910 to 1917, the black population nearly doubled in East St. The United States established a draft which would bring in many workers to the military. As the war prevented immigration from Europe even before the U. Entered the war, major companies had begun to recruit black workers from the South to fill demand. When white workers went on strike in April 1917 at the Aluminum Ore Company, the employer hired blacks as strikebreakers. The American Steel Company also recruited blacks. They were available in part during this period because the U. Army initially rejected many black volunteers in the years before an integrated military. [8] This was also the period of resentment on both sides and the arrival of new workers created fears for job security at a time of union organizing and labor unrest, and raised social tensions. At a large labor meeting of white workers held in City Hall on May 28, men also traded rumors of fraternizing between black men and white women. An inflammatory speaker said, East St. Louis must remain a white man’s town. Three thousand ethnic white men left the meeting and headed as a mob for downtown, where they randomly attacked black men on the street. The Illinois governor called in National Guard to prevent further rioting, but rumors circulated that blacks were planning an organized retaliation and tensions remained high. On July 1, 1917, a black man attacked a white man. [citation needed] After hearing of this, whites drove by black homes near 17th and Market and fired shots into several of them. When police came to investigate a gathering of a large group of local black residents, their car was mistaken for that of the attackers, and several in the crowd at 10th and Bond fired on the police, killing two detectives. The next morning, thousands of whites mobbed the black sections of the city, indiscriminately beating, shooting and killing men, women and children. The rioters burned entire sections of the city and shot blacks as they escaped the flames. They also hanged several blacks. They destroyed buildings and physically attacked people; they killed a 14-year-old boy and scalped his mother. Before it was over 244 buildings were destroyed. [9] Other sources say 300 buildings were destroyed. The city had 35 police officers, but they were seen to be doing little to suppress the violence. The governor called in National Guard troops to try to control the situation; they arrived July 3, but several accounts reported that they joined in the rioting. Most of the violence ended that day, but reports continued afterward of isolated assaults of blacks. Afterward the city Chamber of Commerce called for the resignation of the Police Chief and greater oversight of police operations. Losses in property damage were high, including railroad warehouses and carloads full of goods that were burned, as well as railroad cars. Though official reports suggested that the East St. Louis race riot resulted in the deaths of 39 blacks and 9 whites, other estimates put the figure much higher, with estimates of 100 to 250 blacks being killed. Du Bois of the NAACP came to investigate the riots personally. His organization’s photographer published photos of the destruction in the November issue of The Crisis. Congress also held an investigation. In New York City on July 28, 10,000 black people marched down Fifth Avenue in a Silent Parade, carrying signs and protesting the East St. The march was organized by the National Association for the Advancement of Colored People (NAACP), W. Du Bois, and groups in Harlem. Women and children were dressed in white; the men were dressed in black. Louis continued to have an economy based on industry. Through and after World War II, many workers could make decent livings. It was named an All-America City in 1959 by the National Civic League. Louis celebrated its centennial in 1961. It was known as the Pittsburgh of the West. [4] Its population had reached a peak of 82,366 residents in the 1950 census, the fourth-largest city in Illinois at the time. Through the 1950s and later, the city’s musicians were an integral creative force in blues, rock and roll and jazz. Some left and achieved national recognition, such as Ike & Tina Turner. The jazz great Miles Davis, who became internationally known, was born in nearby Alton and grew up in East St. The 1999 PBS series River of Song featured these musicians in its coverage of music from cities along the Mississippi River. Cargill grain elevator in East St. The city suffered from the mid-century restructuring of heavy industry and railroads, which cost widespread loss of jobs. As a number of local factories began to close because of changes in industry, the railroad and meatpacking industries also were cutting back and moving jobs out of the region. This led to a precipitous loss of working and middle-class jobs. The city’s financial conditions deteriorated. More businesses closed as workers left the area to seek jobs in other regions. The more established white workers had an easier time gaining jobs in other localities, and the city population became increasingly black. “Brownfields” (areas with environmental contamination by heavy industry) have made redevelopment more difficult and expensive. Urban blight in East St. Street gangs appeared in city neighborhoods. Like other cities with endemic problems by the 1960s, violence added to residential mistrust and adversely affected the downtown retail base and the city’s income. The construction of freeways also contributed to East St. They were constructed through and broke up functioning neighborhoods and community networks, adding to the social disruption of the period. The freeways made it easier for residents to commute back and forth from suburban homes, so the wealthier people moved out to newer housing. Louis adopted a number of programs to try to reverse decline: the Model Cities program, the Concentrated Employment Program, and Operation Breakthrough. The programs were not enough to offset the loss of industrial jobs due to national restructuring. In 1971, James E. Williams was elected as the city’s first black mayor. Faced with the overwhelming economic problems, he was unable to make much of a difference. In 1975, William E. Mason was elected mayor; his term marked a return to patronage politics and the city sank deeper into debt and reliance on federal funding. [12] In 1979, Carl Officer was elected as mayor (the youngest in the country at that time at age 25). Despite hopes for improvement, conditions continued to decline. Middle-class citizens continued to leave the city. People who could get jobs moved to places with work and a decent quality of life. Police cars and radios stopped working. Louis Fire Department went on strike in the 1970s. Structure fires destroyed such a significant number of consecutive blocks that much of the post-Armageddon film Escape from New York was filmed in East St. In 1990, the State of Illinois passed 65 ILCS 5/Art. 12 The Financially Distressed City Law. [15] Under this law, Illinois Governor James R. Louis, with the stipulation that an appointed five-member board, called the East St. Louis Financial Advisory Authority, manage the city’s finances. [16] In 1990 the state legislature approved riverboat gambling in an effort to increase state revenues. The opening of the Casino Queen riverboat casino generated the first new source of income for the city in nearly 30 years. In 1991, Gordon Bush was elected mayor. Several major industries operating in the area had gained separate incorporation as jurisdictions for the land where their plants are sited. Residents of the city, however, suffer from contaminated air and other adverse environmental effects of these sites. The Mississippi River[a] is the second-longest river and chief river of the second-largest drainage system on the North American continent, second only to the Hudson Bay drainage system. [15][16] From its traditional source of Lake Itasca in northern Minnesota, it flows generally south for 2,340 miles (3,770 km)[16] to the Mississippi River Delta in the Gulf of Mexico. With its many tributaries, the Mississippi’s watershed drains all or parts of 32 U. States and two Canadian provinces between the Rocky and Appalachian mountains. [17] The main stem is entirely within the United States; the total drainage basin is 1,151,000 sq mi (2,980,000 km2), of which only about one percent is in Canada. The Mississippi ranks as the thirteenth-largest river by discharge in the world. The river either borders or passes through the states of Minnesota, Wisconsin, Iowa, Illinois, Missouri, Kentucky, Tennessee, Arkansas, Mississippi, and Louisiana. Native Americans have lived along the Mississippi River and its tributaries for thousands of years. Most were hunter-gatherers, but some, such as the Mound Builders, formed prolific agricultural and urban civilizations. The arrival of Europeans in the 16th century changed the native way of life as first explorers, then settlers, ventured into the basin in increasing numbers. [20] The river served first as a barrier, forming borders for New Spain, New France, and the early United States, and then as a vital transportation artery and communications link. In the 19th century, during the height of the ideology of manifest destiny, the Mississippi and several western tributaries, most notably the Missouri, formed pathways for the western expansion of the United States. During the American Civil War, the Mississippi’s capture by Union forces marked a turning point towards victory, due to the river’s strategic importance to the Confederate war effort. A major focus of this work has been to prevent the lower Mississippi from shifting into the channel of the Atchafalaya River and bypassing New Orleans. Since the 20th century, the Mississippi River has also experienced major pollution and environmental problems – most notably elevated nutrient and chemical levels from agricultural runoff, the primary contributor to the Gulf of Mexico dead zone. Using steam power, riverboats were developed during that time which could navigate in shallow waters as well as upriver against strong currents. After the development of railroads, passenger traffic gradually switched to this faster form of transportation, but steamboats continued to serve Mississippi River commerce into the early 20th century. A small number of steamboats are still used for tourist excursions in the 21st century. Wood easily degrades without sufficient preservation. Apart from structural wood preservation measures, there are a number of different chemical preservatives and processes (also known as “timber treatment”, “lumber treatment” or “pressure treatment”) that can extend the life of wood, timber, and their associated products, including engineered wood. These generally increase the durability and resistance from being destroyed by insects or fungi. A modern wharf piling bored by bivalves known as shipworms. As proposed by Richardson, [1] treatment of wood has been practiced for almost as long as the use of wood itself. There are records of wood preservation reaching back to ancient Greece during Alexander the Great’s rule, where bridge wood was soaked in olive oil. During the Industrial Revolution, wood preservation became a cornerstone of the wood processing industry. Inventors and scientists such as Bethell, Boucherie, Burnett and Kyan made historic developments in wood preservation, with the preservative solutions and processes. Commercial pressure treatment began in the latter half of the 19th century with the protection of railroad cross-ties using creosote. Treated wood was used primarily for industrial, agricultural, and utility applications, where it is still used, until its use grew considerably (at least in the United States) in the 1970s, as homeowners began building decks and backyard projects. Innovation in treated timber products continues to this day, with consumers becoming more interested in less toxic materials. Wood that has been industrially pressure-treated with approved preservative products poses a limited risk to the public and should be disposed of properly. On December 31, 2003, the U. Wood treatment industry stopped treating residential lumber with arsenic and chromium (chromated copper arsenate, or CCA). This was a voluntary agreement with the United States Environmental Protection Agency. CCA was replaced by copper-based pesticides, with exceptions for certain industrial uses. [2] CCA may still be used for outdoor products like utility trailer beds and non-residential construction like piers, docks, and agricultural buildings. In most countries, industrial wood preservation operations are notifiable industrial activities that require licensing from relevant regulatory authorities such as EPA or equivalent. Reporting and licensing conditions vary widely, depending on the particular chemicals used and the country of use. Although pesticides are used to treat lumber, preserving lumber protects natural resources (in the short term) by enabling wood products to last longer. Previous poor practices in industry have left legacies of contaminated ground and water around wood treatment sites in some cases. However, under currently approved industry practices and regulatory controls, such as implemented in Europe, North America, Australia, New Zealand, Japan and elsewhere, environmental impact of these operations should be minimal. [neutrality is disputed][citation needed]. However, treated wood may present certain hazards in some circumstances, such as during combustion or where loose wood dust particles or other fine toxic residues are generated, or where treated wood comes into direct contact with food and agriculture. Preservatives containing copper in the form of microscopic particles have recently been introduced to the market, usually with “micronized” or “micro” trade names and designations such as MCQ or MCA. The manufacturers represent that these products are safe and EPA has registered these products. Many producers have opted to provide Material Safety Data Sheets (MSDS) instead. Although the practice of distributing MSDS instead of CIS is widespread, there is an ongoing debate regarding the practice and how to best communicate potential hazards and hazard mitigation to the end-user. Neither MSDS nor the newly adopted International Safety Data Sheets (SDS) are required for treated lumber under current U. Chemical preservatives can be classified into three broad categories: water-borne preservatives, oil-borne preservatives, and light organic solvent preservatives (LOSPs). Particulate (micronised or dispersed) copper preservative technology has been introduced in the US and Europe. In these systems, copper is ground into micro sized particles and suspended in water rather than dissolved, as is the case with other copper products such as ACQ and copper azole. There are two particulate copper systems in production. One system uses a quat biocide system (known as MCQ) and is a derivative of ACQ. The other uses an azole biocide (known as MCA or µCA-C) derived from copper azole. Proponents of the particulate copper systems argue that the they perform as well or better than the dissolved copper systems as a wood preservative, but other industry researchers disagree. None of the particulate copper systems have been submitted to the American Wood Protection Association (AWPA) for evaluation; thus, the particulate systems should not be used in applications where AWPA standards are required. However, all of the particulate copper systems have been tested and approved for building code requirements by the International Code Council (ICC). The particulate copper systems provide a lighter color than dissolved copper systems such as ACQ or copper azole. Proponents of the micronized copper systems claim that the systems are subject to third party inspection under a quality monitor program. However, the monitoring program is not subject to oversight by the American Lumber Standard Committee (ALSC) as is required for the AWPA standard systems. Two particulate copper systems, one marketed as MicroPro and the other as Wolmanized using µCA-C formulation, have achieved Environmentally Preferable Product (EPP) certification. [3][4] The EPP certification was issued by Scientific Certifications Systems (SCS) and is based on a comparative life-cycle impact assessments with an industry standard. The copper particle size used in the “micronized” copper beads ranges from 1 to 700 nm with an average under 300 nm. Larger particles (such as actual micron-scale particles) of copper do not adequately penetrate the wood cell walls. These micronized preservatives use nano particles of copper oxide or copper carbonate, for which there are alleged safety concerns. [5] An environmental group petitioned EPA in 2011 to revoke the registration of the micronized copper products, citing safety issues. Alkaline copper quaternary (ACQ) is a preservative made of copper, a fungicide, and a quaternary ammonium compound (quat) like didecyl dimethyl ammonium chloride, an insecticide which also augments the fungicidal treatment. ACQ has come into wide use in the US, Europe, Japan and Australia following restrictions on CCA. [7] Its use is governed by national and international standards, which determine the volume of preservative uptake required for a specific timber end use. Since it contains high levels of copper, ACQ-treated timber is five times more corrosive to common steel. It is necessary to use fasteners meeting or exceeding requirements for ASTM A 153 Class D, such as ceramic-coated, as mere galvanized and even common grades of stainless steel corrode. Began mandating the use of non-arsenic containing wood preservatives for virtually all residential use timber in 2004. The American Wood Protection Association (AWPA) standards for ACQ require a retention of 0.15 lb/cu ft (2.4 kg/m3) for above ground use and 0.40 lb/cu ft (6.4 kg/m3) for ground contact. Chemical Specialties, Inc (CSI, now Viance) received U. Environmental Protection Agency’s Presidential Green Chemistry Challenge Award in 2002 for commercial introduction of ACQ. Its widespread use has eliminated major quantities of arsenic and chromium previously contained in CCA. Copper azole preservative (denoted as CA-B and CA-C under American Wood Protection Association/AWPA standards) is a major copper based wood preservative that has come into wide use in Canada, the US, Europe, Japan and Australia following restrictions on CCA. Its use is governed by national and international standards, which determine the volume of preservative uptake required for a specific timber end use. Copper azole is similar to ACQ with the difference being that the dissolved copper preservative is augmented by an azole co-biocide like organic triazoles such as tebuconazole or propiconazole, which are also used to protect food crops, instead of the quat biocide used in ACQ. [8] The azole co-biocide yields a copper azole product that is effective at lower retentions than required for equivalent ACQ performance. The general appearance of wood treated with copper azole preservative is similar to CCA with a green colouration. Copper azole treated wood is marketed widely under the Preserve CA and Wolmanized brands in North America, and the Tanalith brand across Europe and other international markets. The AWPA standard retention for CA-B is 0.10 lb/cu ft (1.6 kg/m3) for above ground applications and 0.21 lb/cu ft (3.4 kg/m3) for ground contact applications. Type C copper azole, denoted as CA-C, has been introduced under the Wolmanized and Preserve brands. The AWPA standard retention for CA-C is 0.06 lb/cu ft (0.96 kg/m3) for above ground applications and 0.15 lb/cu ft (2.4 kg/m3) for ground contact applications. Copper naphthenate, invented in Denmark in 1911, has been used effectively for many applications including: fencepost, canvas, nets, greenhouses, utility poles, railroad ties, beehives, and wooden structures in ground contact. Copper naphthenate is registered with the EPA as a non-restricted use pesticide, so there is no federal applicators licensing requirements for its use as a wood preservative. Copper Naphthenate can be applied by brush, dip, or pressure treatment. On February 19, 1981, the Federal Register outlined the EPA’s position regarding the health risks associated with various wood preservatives. As a result, the National Park Service recommended the use of copper naphthenate in its facilities as an approved substitute for pentachlorophenol, creosote, and inorganic arsenicals. A 50-year study presented to AWPA in 2005 by Mike Freeman and Douglas Crawford says, This study reassessed the condition of the treated wood posts in southern Mississippi, and statistically calculated the new expected post life span. It was determined that commercial wood preservatives, like pentachlorophenol in oil, creosote, and copper naphthenate in oil, provided excellent protection for posts, with life spans now calculated to exceed 60 years. Surprisingly, creosote and penta treated posts at 75% of the recommended AWPA retention, and copper naphthenate at 50% of the required AWPA retention, gave excellent performance in this AWPA Hazard Zone 5 site. Untreated southern pine posts lasted 2 years in this test site. The AWPA M4 Standard for the care of preservative-treated wood products, reads, The appropriateness of the preservation system for field treatment shall be determined by the type of preservative originally used to protect the product and the availability of a field treatment preservative. Because many preservative products are not packaged and labeled for use by the general public, a system different from the original treatment may need to be utilized for field treatment. Users shall carefully read and follow the instructions and precautions listed on the product label when using these materials. Copper naphthenate preservatives containing a minimum of 2.0% copper metal are recommended for material originally treated with copper naphthenate, pentachlorophenol, creosote, creosote solution or waterborne preservatives. [10] The M4 Standard has been adopted by the[11] International Code Council’s (ICC) 2015 International Building Code (IBC) section 2303.1.9 Preservative-treated Wood, and 2015 International Residential Code (IRC) R317.1.1 Field Treatment. The American Association of State Highway and Transportation Officials AASHTO has also adopted the AWPA M4 Standard. Chromated copper arsenate (CCA). Main article: Chromated copper arsenate. In CCA treatment, copper is the primary fungicide, arsenic is a secondary fungicide and an insecticide, and chromium is a fixative which also provides ultraviolet (UV) light resistance. Recognized for the greenish tint it imparts to timber, CCA is a preservative that was very common for many decades. In the pressure treatment process, an aqueous solution of CCA is applied using a vacuum and pressure cycle, and the treated wood is then stacked to dry. During the process, the mixture of oxides reacts to form insoluble compounds, helping with leaching problems. The process can apply varying amounts of preservative at varying levels of pressure to protect the wood against increasing levels of attack. Increasing protection can be applied (in increasing order of attack and treatment) for: exposure to the atmosphere, implantation within soil, or insertion into a marine environment. In the last decade concerns were raised that the chemicals may leach from the wood into surrounding soil, resulting in concentrations higher than naturally occurring background levels. A study cited in Forest Products Journal found 12-13% of the chromated copper arsenate leached from treated wood buried in compost during a 12-month period. Once these chemicals have leached from the wood, they are likely to bind to soil particles, especially in soils with clay or soils that are more alkaline than neutral. In the United States the US Consumer Product Safety Commission issued a report in 2002 stating that exposure to arsenic from direct human contact with CCA treated wood may be higher than was previously thought. On 1 January 2004, the Environmental Protection Agency (EPA) in a voluntary agreement with industry began restricting the use of CCA in treated timber in residential and commercial construction, with the exception of shakes and shingles, permanent wood foundations, and certain commercial applications. This was in an effort to reduce the use of arsenic and improve environmental safety, although the EPA were careful to point out that they had not concluded that CCA treated wood structures in service posed an unacceptable risk to the community. The EPA did not call for the removal or dismantling of existing CCA treated wood structures. In Australia, the Australian Pesticides and Veterinary Medicines Authority (APVMA[12]) restricted the use of CCA preservative for treatment of timber used in certain applications from March 2006. CCA may no longer be used to treat wood used in’intimate human contact’ applications such as children’s play equipment, furniture, residential decking and handrailing. Use for low contact residential, commercial and industrial applications remains unrestricted, as does its use in all other situations. The APVMA decision to restrict the use of CCA in Australia was a precautionary measure, even though the report[13] found no evidence that demonstrated CCA treated timber posed unreasonable risks to humans in normal use. Similarly to the US EPA, the APVMA did not recommend dismantling or removal of existing CCA treated wood structures. In Europe, Directive 2003/2/EC restricts the marketing and use of arsenic, including CCA wood treatment. CCA treated wood is not permitted to be used in residential or domestic constructions. It is permitted for use in various industrial and public works, such as bridges, highway safety fencing, electric power transmission and telecommunications poles. In the United Kingdom waste timber treated with CCA was classified in July 2012 as hazardous waste by the Department for the Environment, Food and Rural Affairs. These include copper HDO Bis-(N-cyclohexyldiazeniumdioxy)-copper or CuHDO, copper chromate, copper citrate, acid copper chromate, and ammoniacal copper zinc arsenate (ACZA). The CuHDO treatment is an alternative to CCA, ACQ and CA used in Europe and in approval stages for United States and Canada. ACZA is generally used for marine applications. Boric acid, oxides and salts (borates) are effective wood preservatives and are supplied under numerous brand names throughout the world. One of the most common compounds used is disodium octaborate tetrahydrate (commonly abbreviated DOT). Borate treated wood is of low toxicity to humans, and does not contain copper or other heavy metals. However, unlike most other preservatives, borate compounds do not become fixed in the wood and can be partially leached out if exposed repeatedly to water that flows away rather than evaporating (evaporation leaves the borate behind so is not a problem). Even though leaching will not normally reduce boron concentrations below effective levels for preventing fungal growth, borates should not be used where they will be exposed to repeated rain, water or ground contact unless the exposed surfaces are treated to repel water. [15] Zinc-borate compounds are less susceptible to leaching than sodium-borate compounds, but are still not recommended for below-ground use unless the timber is first sealed. [16] Recent interest in low toxicity timber for residential use, along with new regulations restricting some wood preservation agents, has resulted in a resurgence of the use of borate treated wood for floor beams and internal structural members. Researchers at CSIRO in Australia have developed organoborates which are much more resistant to leaching, while still providing timber with good protection from termite and fungal attack. [17][18] The cost of the production of these modified borates will limit their widespread take-up but they are likely to be suitable for certain niche applications, especially where low mammalian toxicity is of paramount importance. Recent concerns about the health and environmental effects of metallic wood preservatives have created a market interest in non-metallic wood preservatives such as propiconazole-tebuconazole-imidacloprid better known as PTI. The American Wood Protection Association (AWPA) standards for PTI require a retention of 0.018 lb/cu ft (0.29 kg/m3) for above ground use and 0.013 lb/cu ft (0.21 kg/m3) when applied in combination with a wax stabilizer. The AWPA has not developed a standard for a PTI ground contact preservative, so PTI is currently limited to above ground applications such as decks. All three of the PTI components are also used in food crop applications. The PTI preservative imparts very little color to the wood. Producers generally add a color agent or a trace amount of copper solution so as to identify the wood as pressure treated and to better match the color of other pressure treated wood products. The PTI wood products are very well adapted for paint and stain applications with no bleed-through. The addition of the wax stabilizer allows a lower preservative retention plus substantially reduces the tendency of wood to warp and split as it dries. In combination with normal deck maintenance and sealer applications, the stabilizer helps maintain appearance and performance over time. PTI pressure treated wood products are no more corrosive than untreated wood and are approved for all types of metal contact, including aluminum. PTI pressure treated wood products are relatively new to the market place and are not yet widely available in building supply stores. Sodium silicate is produced by fusing sodium carbonate with sand or heating both ingredients under pressure. It has been in use since the 19th century. It can be a deterrent against insect attack and possesses minor flame-resistant properties; however, it is easily washed out of wood by moisture, forming a flake-like layer on top of the wood. Timber Treatment Technology, LLC, markets TimberSIL, a sodium silicate wood preservative. The TimberSIL proprietary process surrounds the wood fibers with a protective, non-toxic, amorphous glass matrix. The result is a product the company calls “Glass Wood, ” which they claim is Class A fire-retardant, chemically inert, rot and decay resistant, and superior in strength to untreated wood. [19] Timbersil is currently involved in litigation over its claims. There are a number of European natural paint fabricants that have developed potassium silicate (potassium waterglass) based preservatives. They frequently include boron compounds, cellulose, lignin and other plant extracts. They are a surface application with a minimal impregnation for internal use. In Australia, a water-based bifenthrin preservative has been developed to improve the insect resistance of timber. As this preservative is applied by spray, it only penetrates the outer 2 mm of the timber cross-section. Concerns have been raised as to whether this thin-envelope system will provide protection against insects in the longer term, particularly when exposed to sunlight for extended periods. This treated wood utilizes a fire retardant chemical that remains stable in high temperature environments. The fire retardant is applied under pressure at a wood treating plant like the preservatives described above, or applied as a surface coating. In both cases, treatment provides a physical barrier to flame spread. The treated wood chars but does not oxidize. Effectively this creates a convective layer that transfers flame heat to the wood in a uniform way which significantly slows the progress of fire to the material. There are several commercially available wood-based construction materials using pressure-treatment (such as those marketed in the United States and elsewhere under the trade names of’FirePro’,’Burnblock”Wood-safe,’Dricon’,’D-Blaze,’ and’Pyro-Guard’), as well as factory-applied coatings under the trade names of’PinkWood’ and’NexGen’. Some site-applied coatings as well as brominated fire retardants have lost favor due to safety concerns as well as concerns surrounding the consistency of application. Specialized treatments also exist for wood used in weather-exposed applications. The only impregnation-applied fire retardant commercially available in Australia is’NexGen’. Guardian’, which used calcium formate as a’powerful wood modifying agent’, was removed from sale in early 2010 for unspecified reasons. These include pentachlorophenol (“penta”) and creosote. They emit a strong petrochemical odor and are generally not used in consumer products. Both of these pressure treatments routinely protect wood for 40 years in most applications. Creosote was the first wood preservative to gain industrial importance more than 150 years ago and it is still widely used today for protection of industrial timber components where long service life is essential. Creosote is a tar-based preservative that is commonly used for utility poles and railroad ties (UK: railway sleepers). Creosote is one of the oldest wood preservatives, and was originally derived from a wood distillate, but now, virtually all creosote is manufactured from the distillation of coal tar. In recent years in Australia and New Zealand, linseed oil has been incorporated in preservative formulations as a solvent and water repellent to “envelope treat” timber. This involves just treating the outer 5 mm of the cross-section of a timber member with preservative e. Permethrin 25:75, leaving the core untreated. While not as effective as CCA or LOSP methods, envelope treatments are significantly cheaper, as they use far less preservative. Major preservative manufacturers add a blue (or red) dye to envelope treatments. Blue colored timber is for use south of the Tropic of Capricorn and red for elsewhere. The colored dye also indicates that the timber is treated for resistance to termites/white ants. There is an ongoing promotional campaign in Australia for this type of treatment. Light organic solvent preservatives (LOSP). This class of timber treatments use white spirit, or light oils such as kerosene, as the solvent carrier to deliver preservative compounds into timber. Synthetic pyrethroids are typically used as an insecticide, such as permethrin, bifenthrin or deltamethrin. In Australia and New Zealand, the most common formulations use permethrin as an insecticide, and propiconazole and tebuconazole as fungicides. While still using a chemical preservative, this formulation contains no heavy-metal compounds. With the introduction of strict volatile organic compound (VOC) laws in the European Union, LOSPs have disadvantages due to the high cost and long process times associated with vapour-recovery systems. LOSPs have been emulsified into water-based solvents. While this does significantly reduce VOC emissions, the timber swells during treatment, removing many of the advantages of LOSP formulations. Various epoxy resins usually thinned with a solvent like acetone or methyl ethyl ketone (MEK) can be used to both preserve and seal wood. Biological modified timber is treated with biopolymers from agricultural waste. After drying and curing, the soft timber becomes durable and strong. With this process fast growing pinewood acquires properties similar to tropical hardwood. Production facilities for this process are in The Netherlands and is known under the trade name “NobelWood”. From agricultural waste, like sugarcane bagasse, furfuryl alcohol is manufactured. Theoretically this alcohol can be from any fermented bio-mass waste and therefore can be called a green chemical. After condensation reactions pre-polymers are formed from furfuryl alcohol. Fast growing softwood is impregnated with the water-soluble bio-polymer. After impregnation the wood is dried and heated which initiates a polymerisation reaction between the bio-polymer and the wood cells. This process results in wood cells which are resistant to microorganisms. At the moment the only timber species which is being used for this process is Pinus radiata. This is the fastest growing tree species on Earth that has a porous structure which is particularly suitable for impregnation processes. The technique is applied to timber mainly for the building industry as a cladding material. The technique is being further developed in order to reach similar physical and biological properties of other polyfurfuryl impregnated wood species. Besides the impregnation with the biopolymers the timber can also be impregnated with fire retardant resins. This combination creates a timber with durability class I and a fire safety certification of Euro class B. This bridge made from acetylated wood near Sneek, the Netherlands, is designed to carry heavy traffic. Chemical modification of wood at the molecular level has been used to improve its performance properties. Many chemical reaction systems for the modification of wood, especially those using various types of anhydrides, have been published; however, the reaction of wood with acetic anhydride has been the most studied. The physical properties of any material are determined by its chemical structure. Wood contains an abundance of chemical groups called free hydroxyls. Free hydroxyl groups readily absorb and release water according to changes in the climatic conditions to which they are exposed. This is the main reason why wood’s dimensional stability is impacted by swelling and shrinking. It is also believed that the digestion of wood by enzymes initiates at the free hydroxyl sites, which is one of the principal reasons why wood is prone to decay. Acetylation effectively changes the compounds with free hydroxyls within wood into acetate esters. This is done by reacting the wood with acetic anhydride, which comes from acetic acid. When free hydroxyl groups are transformed to acetoxy groups, the ability of the wood to absorb water is greatly reduced, rendering the wood more dimensionally stable and, because it is no longer digestible, extremely durable. In general, softwoods naturally have an acetyl content from 0.5 to 1.5% and more durable hardwoods from 2 to 4.5%. Acetylation takes wood well beyond these levels with corresponding benefits. These include an extended coatings life due to acetylated wood acting as a more stable substrate for paints and translucent coatings. Acetylated wood is non-toxic and does not have the environmental issues associated with traditional preservation techniques. The acetylation of wood was first done in Germany in 1928 by Fuchs. In 1946, Tarkow, Stamm and Erickson first described the use of wood acetylation to stabilize wood from swelling in water. Since the 1940s, many laboratories around the world have looked at acetylation of many different types of woods and agricultural resources. In spite of the vast amount of research on chemical modification of wood, and, more specifically, on the acetylation of wood, commercialization did not come easily. The first patent on the acetylation of wood was filed by Suida in Austria in 1930. Later, in 1947, Stamm and Tarkow filed a patent on the acetylation of wood and boards using pyridine as a catalyst. In 1961, the Koppers Company published a technical bulletin on the acetylation of wood using no catalysis, but with an organic cosolvent[24] In 1977, in Russia, Otlesnov and Nikitina came close to commercialization, but the process was discontinued, presumably because cost-effectiveness could not be achieved. In 2007, Titan Wood, a London-based company, with production facilities in The Netherlands, achieved cost-effective commercialization and began large-scale production of acetylated wood under the trade name “Accoya”. These species are resistant to decay in their natural state, due to high levels of organic chemicals called extractives, mainly polyphenols, providing them antimicrobial properties. [26] Extractives are chemicals that are deposited in the heartwood of certain tree species as they convert sapwood to heartwood; they are present in both parts though. [27] Huon pine (Lagarostrobos franklinii), merbau (Intsia bijuga), ironbark Eucalyptus spp. , totara (Podocarpus totara), puriri (Vitex lucens), kauri (Agathis australis), and many cypresses, such as coast redwood (Sequoia sempervirens) and western red cedar (Thuja plicata), fall in this category. However, many of these species tend to be prohibitively expensive for general construction applications. Huon pine is so rot resistant that fallen trees from many years ago are still commercially valuable. Merbau is still a popular decking timber and has a long life in above ground applications, but it is logged in an unsustainable manner and is too hard and brittle for general use. Ironbark is a good choice where available. It is harvested from both old-growth and plantation in Australia and is highly resistant to rot and termites. It is most commonly used for fence posts and house stumps. Eastern red cedar (Juniperus virginiana) and black locust (Robinia pseudoacacia) have long been used for rot-resistant fence posts and rails in eastern United States, with the black locust also planted in modern times in Europe. Coast redwood is commonly used for similar applications in the western United States. Totara and puriri were used extensively in New Zealand during the European colonial era when native forests were “mined”, even as fence posts of which many are still operating. Totara was used by the Maori to build large waka (canoes). Kauri is a superb timber for building the hulls and decks of boats. It too is now a specialty timber and ancient logs (in excess of 3 000 years) that have been mined from swamps are used by wood turners and furniture makers. The natural durability or rot and insect resistance of wood species is always based on the heartwood (or “truewood”). The sapwood of all timber species should be considered to be non-durable without preservative treatment. Natural substances, purified from naturally rot-resistant trees and responsible for natural durability, also known as natural extractives, are another promising wood preservatives. Several compounds have been described to be responsible for natural durability, including different polyphenols, lignins lignans, such as gmelinol, plicatic acid, hinokitiol, a-cadinol and other sesquiterpenoids, flavonoids, such as mesquitol, and other substances. [28][29][30] These compounds are mostly identified in the heartwood, although they are also present in minimal concentrations in the sapwood. [31] Tannins, which have also shown to act as protectants, are present in the bark of trees. [32] Treatment of timber with natural extractives, such as hinokitiol, tannins, and different tree extracts, has been studied and proposed to be another environmentally-friendly wood preservation method. [33][34][35][36]. The oil penetrates the wood, and then hardens to form an impermeable hydrophobic layer up to 5 mm into the wood. As a preservative it is effective for exterior work above and below ground, but the thin layer makes it less useful in practice. It is not available as a pressure treatment. Main article: Thermally modified wood. By going beyond kiln drying wood, heat treatment may make timber more durable. By heating timber to a certain temperature, it may be possible to make the wood fibre less appetizing to insects. Heat treatment can also improve the properties of the wood with respect to water, with lower equilibrium moisture, less moisture deformation, and weather resistance. It is weather-resistant enough to be used unprotected, in facades or in kitchen tables, where wetting is expected. However, heating can reduce the amount of volatile organic compounds, [27] which generally have antimicrobial properties. There are four similar heat treatments – Westwood, developed in the United States; Retiwood, developed in France; Thermowood, developed in Finland by VTT; and Platowood, developed in The Netherlands. These processes autoclave the treated wood, subjecting it to pressure and heat, along with nitrogen or water vapour to control drying in a staged treatment process ranging from 24 to 48 hours at temperatures of 180 °C to 230 °C depending on timber species. These processes increase the durability, dimensional stability and hardness of the treated wood by at least one class; however, the treated wood is darkened in colour, and there are changes in certain mechanical characteristics: Specifically, the modulus of elasticity is increased to 10%, [citation needed] and the modulus of rupture is diminished by 5% to 20%;[citation needed] thus, the treated wood requires drilling for nailing to avoid splitting the wood. Certain of these processes cause less impact than others in their mechanical effects upon the treated wood. Wood treated with this process is often used for cladding or siding, flooring, furniture and windows. For the control of pests that may be harbored in wood packaging material i. Crates and pallets, the ISPM 15 requires heat treatment of wood to 56 °C for 30 minutes to receive the HT stamp. This is typically required to ensure the killing of the pine wilt nematode and other kinds of wood pests that could be transported internationally. Wood and bamboo can be buried in mud to help protect them from insects and decay. This practice is used widely in Vietnam to build farm houses consisting of a wooden structural frame, a bamboo roof frame and bamboo with mud mixed with rice hay for the walls. While wood in contact with soil will generally decompose more quickly than wood not in contact with it, it is possible that the predominantly clay soils prevalent in Vietnam provide a degree of mechanical protection against insect attack, which compensates for the accelerated rate of decay. Also, since wood is subject to bacterial decay only under specific temperature and moisture content ranges, submerging it in water-saturated mud can retard decay, by saturating the wood’s internal cells beyond their moisture decay range. Probably the first attempts made to protect wood from decay and insect attack consisted of brushing or rubbing preservatives onto the surfaces of the treated wood. Through trial and error the most effective preservatives and application processes were slowly determined. In the Industrial Revolution, demands for such things as telegraph poles and railroad ties (UK: railway sleepers) helped to fuel an explosion of new techniques that emerged in the early 19th century. The sharpest rise in inventions took place between 1830 and 1840, when Bethell, Boucherie, Burnett and Kyan were making wood-preserving history. Since then, numerous processes have been introduced or existing processes improved. The goal of modern-day wood preservation is to ensure a deep, uniform penetration with reasonable cost, without endangering the environment. The most widespread application processes today are those using artificial pressure through which many woods are being effectively treated, but several species (such as spruce, Douglas-fir, larch, hemlock and fir) are very resistant to impregnation. With the use of incising, the treatment of these woods has been somewhat successful but with a higher cost and not always satisfactory results. One can divide the wood-preserving methods roughly into either non-pressure processes or pressure processes. There are numerous non-pressure processes of treating wood which vary primarily in their procedure. The most common of these treatments involve the application of the preservative by means of brushing or spraying, dipping, soaking, steeping or by means of hot and cold bath. There is also a variety of additional methods involving charring, applying preservatives in bored holes, diffusion processes and sap displacement. Brush and spray treatments. Brushing preservatives is a long-practised method and often used in today’s carpentry workshops. Technological developments mean it is also possible to spray preservative over the surface of the timber. Some of the liquid is drawn into the wood as the result of capillary action before the spray runs off or evaporates, but unless puddling occurs penetration is limited and may not be suitable for long-term weathering. By using the spray method, coal-tar creosote, oil-borne solutions and water-borne salts (to some extent) can also be applied. A thorough brush or spray treatment with coal-tar creosote can add 1 to 3 years to the lifespan of poles or posts. Two or more coats provide better protection than one, but the successive coats should not be applied until the prior coat has dried or soaked into the wood. The wood should be seasoned before treatment. Dipping consists of simply immersing the wood in a bath of creosote or other preservative for a few seconds or minutes. Similar penetrations to that of brushing and spraying processes are achieved. It has the advantage of minimizing hand labor. It requires more equipment and larger quantities of preservative and is not adequate for treating small lots of timber. Usually the dipping process is useful in the treatment of window sashes and doors. Except for copper naphthenate, treatment with copper salt preservative is no longer allowed with this method. In this process the wood is submerged in a tank of water-preservative mix, and allowed to soak for a longer period of time (several days to weeks). This process was developed in the 19th century by John Kyan. The depth and retention achieved depends on factors such as species, wood moisture, preservative and soak duration. The majority of the absorption takes place during the first two or three days, but will continue at a slower pace for an indefinite period. As a result, the longer the wood can be left in the solution, the better treatment it will receive. When treating seasoned timber, both the water and the preservative salt soak into the wood, making it necessary to season the wood a second time. Posts and poles can be treated directly on endangered areas, but should be treated at least 30 cm (0.98 ft) above the future ground level. The depth obtained during regular steeping periods varies from 5 to 10 mm (0.20 to 0.39 in) up to 30 mm (1.2 in) by sap pine. Due to the low absorption, solution strength should be somewhat stronger than that in pressure processes, around 5% for seasoned timber and 10% for green timber (because the concentration slowly decreases as the chemicals diffuse into the wood). The solution strength should be controlled continually and, if necessary, be corrected with the salt additive. After the timber is removed from the treatment tank, the chemical will continue to spread within the wood if it has sufficient moisture content. The wood should be weighed down and piled so that the solution can reach all surfaces. Sawed materials stickers should be placed between every board layer. This process finds minimal use despite its former popularity in continental Europe and Great Britain. Named after John Howard Kyan, who patented this process in England in 1833, Kyanizing consists of steeping wood in a 0.67% mercuric chloride preservative solution. It is no longer used. Patented by Charles A. Seely, this process achieves treatment by immersing seasoned wood in successive baths of hot and cold preservatives. During the hot baths, the air expands in the timbers. When the timbers are changed to the cold bath (the preservative can also be changed) a partial vacuum is created within the lumen of the cells, causing the preservative to be drawn into the wood. Some penetration occurs during the hot baths, but most of it takes place during the cold baths. This cycle is repeated with a significant time reduction compared to other steeping processes. Each bath may last 4 to 8 hours or in some cases longer. The temperature of the preservative in the hot bath should be between 60 to 110 °C (140 to 230 °F) and 30 to 40 °C (86 to 104 °F) in the cold bath (depending on preservative and tree species). The average penetration depths achieved with this process ranges from 30 to 50 mm (1.2 to 2.0 in). Both preservative oils and water-soluble salts can be used with this treatment. Due to the longer treatment periods, this method finds little use in the commercial wood preservation industry today. As explained in Uhlig’s Corrosion Handbook, this process involves two or more chemical baths that undergo a reaction with the cells of the wood, and result in the precipitation of preservative into the wood cells. Two chemicals commonly employed in this process are copper ethanolamine, and sodium dimethyldithiocarbamate, which reacts to precipitate copper dimetyldithiocarbamate. The precipitated preservative is very resistant to leeching. Since its use in the mid 1990s, it has been discontinued in the United States of America, but it never saw commercialization in Canada. Late 19th century pressure treatment. Pressure processes are the most permanent method around today in preserving timber life. Pressure processes are those in which the treatment is carried out in closed cylinders with applied pressure or vacuum. These processes have a number of advantages over the non-pressure methods. In most cases, a deeper and more uniform penetration and a higher absorption of preservative is achieved. Another advantage is that the treating conditions can be controlled so that retention and penetration can be varied. These pressure processes can be adapted to large-scale production. The high initial costs for equipment and the energy costs are the biggest disadvantages. These treatment methods are used to protect ties, poles and structural timbers and find use throughout the world today. The various pressure processes that are used today differ in details, but the general method is in all cases the same. The treatment is carried out in cylinders. The timbers are loaded onto special tram cars, so called buggies or bogies, and into the cylinder. These cylinders are then set under pressure often with the addition of higher temperature. As final treatment, a vacuum is frequently used to extract excess preservatives. These cycles can be repeated to achieve better penetration. LOSP treatments often use a vacuum impregnation process. This is possible because of the lower viscosity of the white-spirit carrier used. In the full-cell process, the intent is to keep as much of the liquid absorbed into the wood during the pressure period as possible, thus leaving the maximum concentration of preservatives in the treated area. Usually, water solutions of preservative salts are employed with this process, but it is also possible to impregnate wood with oil. The desired retention is achieved by changing the strength of the solution. William Burnett patented this development in 1838 of full-cell impregnation with water solutions. The patent covered the use of zinc chloride on water basis, also known as Burnettizing. A full-cell process with oil was patented in 1838 by John Bethell. His patent described the injection of tar and oils into wood by applying pressure in closed cylinders. This process is still used today with some improvements. Contrary to the static full-cell and empty-cell processes, the fluctuation process is a dynamic process. By this process the pressure inside the impregnation cylinder changes between pressure and vacuum within a few seconds. There have been inconsistent claims that through this process it is possible to reverse the pit closure by spruce. However, the best results that have been achieved with this process by spruce do not exceed a penetration deeper than 10 mm (0.39 in). Specialized equipment is necessary and therefore higher investment costs are incurred. Boucherie of France in 1838, this approach consisted of attaching a bag or container of preservative solution to a standing or a freshly cut tree with bark, branches, and leaves still attached, thereby injecting the liquid into the sap stream. Through transpiration of moisture from the leaves the preservative is drawn upward through the sapwood of the tree trunk. The modified Boucherie process consists of placing freshly cut, unpeeled timbers onto declining skids, with the stump slightly elevated, then fastening watertight covering caps or boring a number of holes into the ends, and inserting a solution of copper sulfate or other waterborne preservative into the caps or holes from an elevated container. Preservative oils tend to not penetrate satisfactorily by this method. The hydrostatic pressure of the liquid forces the preservative lengthwise into and through the sapwood, thus pushing the sap out of the other end of the timber. After a few days, the sapwood is completely impregnated; unfortunately little or no penetration takes place in the heartwood. Only green wood can be treated in this manner. High-pressure sap displacement system. Developed in the Philippines, this method (abbreviated HPSD) consists of a cylinder pressure cap made from a 3 mm thick mild steel plate secured with 8 sets of bolts, a 2-HP diesel engine, and a pressure regulator with 1.4-14 kg/m2 capacity. The cap is placed over the stump of a pole, tree or bamboo and the preservative is forced into the wood with pressure from the engine. First tested and patented by Kolossvary, Haltenberger, and Berdenich of Austria in 1911 and 1912 U. 1,012,207 and 1,018,624 with several improvements from O. Mansfield among others, this process consists of making shallow, slit-like holes in the surfaces of material to be treated, so that deeper and more uniform penetration of preservative may be obtained. The term incising or perforating comes from the Latin incidere, a compound of in and caedere (to cut). Incisions made in sawed material usually are parallel with the grain of the wood. This process is common in North America (since the 1950s), where Douglas-fir products and pole butts of various species are prepared before treatment. It is most useful for woods that are resistant to side penetration, but allow preservative transport along the grain. In the region in which it is produced, it is common practice to incise all sawed Douglas-fir 3 in (76 mm) or more in thickness before treatment. Unfortunately, the impregnation of spruce, the most important structural timber in large areas in Europe, has shown that unsatisfactory treatment depths have been achieved with impregnation. The maximum penetration of 2 mm (0.079 in) is not sufficient to protect wood in weathered positions. The present-day incising machines consist essentially of four revolving drums fitted with teeth or needles or with lasers that burn the incisions into the wood. Preservatives can be spread along the grain up to 20 mm (0.79 in) in radial and up to 2 mm (0.079 in) in tangential and radial direction. In North America, where smaller timber dimensions are common, incision depths of 4 to 6 mm (0.16 to 0.24 in) have become standard. In Europe, where larger dimensions are widespread, incision depths of 10 to 12 mm (0.39 to 0.47 in) are necessary. The incisions are visible and often considered to be wood error. Incisions by laser are significantly smaller than those of spokes or needles. Figures originate from the year 1998 and may vary from present day prices. An alternative increases the permeability of timber using microwave technology. There is some concern that this method may adversely affect the structural performance of the material. Research in this area has been conducted by the Cooperative Research Centre at the University of Melbourne, Australia. Charring of timber results in surfaces which are fire-resistant, insect-resistant and proof against weathering. Wood surfaces are ignited using a hand-held burner or moved slowly across a fire. The charred surface is then cleaned using a steel brush to remove loose bits and to expose the grain. Oil or varnish may be applied if required. [39] Charring wood with a red-hot iron is a traditional method in Japan, where it is called yakisugi or sho sugi ban (literally “fire Cypress'”). Leaky homes crisis in New Zealand. In corporate law, a stock certificate (also known as certificate of stock or share certificate) is a legal document that certifies ownership of a specific number of shares or stock in a corporation. Over time, these functions have been rendered redundant by statutory schemes to streamline the administrative burden on corporations. For example, most jurisdictions now impose an obligation on corporations to pay dividends to shareholders registered at a relevant point of time without the need to produce the share certificate as proof of entitlement and the certificate is no longer required to be produced with a transfer of a shareholding. In some jurisdictions today, the issue of paper stock certificates may be dispensed with, at least in some circumstances, and many corporations now provide a holding statement in lieu of a share certificate for each parcel of shares owned. Most jurisdictions now require corporations to maintain records of ownership or transfers of shareholdings, and do not permit share certificates to be issued to bearer. Ripophily is the study and collection of stock and bond certificates. A specialized field of numismatics, scripophily is an area of collecting due to both the inherent beauty of some historical documents as well as the interesting historical context of each document. Some stock certificates are excellent examples of engraving. Occasionally an old stock certificate will be found which still has value as a stock in a successor company. Scripophily, the collecting of old stocks and bonds, gained recognition as a hobby around 1970. The word “scripophily” was coined by combining words from English and Greek. The word “scrip” represents an ownership right and the word “philos” means to love. Today, there are thousands of collectors worldwide (Scripophilists) in search of scarce, rare, and popular stocks and bonds. Collectors who come from a variety of businesses enjoy this as a hobby, although there are many who also consider scripophily a good investment. Many collectors like the historical significance of old certificates. Others prefer the beauty of older stocks and bonds that were printed in various colors with fancy artwork and ornate engraving. In recent times, Dot com companies and scandals have been particularly popular issuances. A recent addition to the hobby is collecting real, live shares issued in one’s name. Common companies that issue stock certificates include Walt Disney, Harley-Davidson, McDonald’s, Starbucks, Google, Ford Motors, Coca-Cola, and Berkshire Hathaway. Again, framing is a popular option for these shares. Many autograph collectors are found in this field, looking for signed certificates from John D. A large part of scripophily is the area of financial history. In order to do so, the founders of these companies issued securities. Generally speaking, they either issued an equity security in the form of stock or a debt security in the form of a bond. However, there are many varieties of equity and debt instruments. They can be common stock, preferred stock, warrants, cumulative preferred stocks, bonds, zero-coupon bonds, long term bonds (over 15 years) and any combination thereof. Each certificate is a piece of history about a company and its business. Some companies became major successes, while others were acquired and merged with other companies. Some companies and industries were successful until they were replaced by new technologies. Some companies have been the center of scandal or fraud. The color, paper, signatures, dates, stamps, cancellations, borders, pictures, vignettes, industry, stock broker, name of company, transfer agent, printer, and holder name all add to the uniqueness of the hobby. A lot of companies either were never successful or went bankrupt, so that their certificates became worthless pieces of paper until the hobby of scripophily began. The mining boom in the 1850s, railroad construction in the 1830s, the oil boom in the 1870s, telegraphy (1850s), the automobile industry beginning around 1900, aviation (around 1910), electric power and banks in the 1930s, the airline wars and mergers in the 1970s, cellular telephones (1980s), long distance telephone service in the 1980s and 1990s, and most recently the Dot-com era and Enron all resulted in historically significant certificates being generated and issued. Today, more stocks and bonds are issued electronically, meaning fewer paper certificates are issued as a percentage of actual stock issued. The Internet has played a dramatic role in raising awareness of the hobby. This article’s tone or style may not reflect the encyclopedic tone used on Wikipedia. See Wikipedia’s guide to writing better articles for suggestions. (November 2009) (Learn how and when to remove this template message). Baltimore and Ohio Railroad. There are many factors that determine value of a certificate. These include condition, age, historical significance, signatures, rarity, demand for the item, aesthetics, type of company, original face value, bankers associated with issuance, transfer stamps, cancellation markings, issued or unissued, printers, and type of engraving process. Condition – The grading scale that could be used in stocks and bonds is shown below. Generally speaking, however, the grading is not used in the hobby as strictly as it is in coins and stamps. Most people acquire certificates for the artwork and history. Uncirculated – Looks like new, no abnormal markings or folds, no staples, clean signature and no stains. Extremely Fine – Slight traces of wear. Very Fine – Minor traces of wear. Fine – Creased with clear signs of use and wear. Fair- Strong signs of use and wear. Poor- Some damage with heavy signs of wear and staining. Age – Usually the older the more valuable, but not always. Historical significance – What product did the company produce? Was it the first car, airplane, cotton gin, etc. Was the company successful? Was it a fraud? In what era i. During a war, depression, revolution was the item issued? Signatures – Did anyone famous or infamous sign the certificate? Cross Collecting Themes – Sports, finance, automotive, and railroad enthusiast interest. Newsworthy – Some companies that are in the news (good or bad). Certificate Owner’s Name – Was the certificate issued to anyone famous or to a famous company? Rarity – How many of the certificates were issued? How many survived over the years? Is the certificate a low number? Demand for Item – How many people are trying to collect the same certificate? Aesthetics – How does the certificate look? What is in the vignette? What color of ink was used? Does it have fancy borders or writing on it? Type of company – What type of company was it issued for? Does the industry still exist? Has the industry changed a lot over the years? Original Face Value – How much was the stock or bond issued for? Usually, the larger the original face value, the more collectible it is. Bankers associated with Issuance – Who worked on the fund raising efforts? Was it someone famous or a famous bank? Is the bank still in existence? Are the stamps valuable or unusual? Cancellation Markings – Are the cancellation markings interesting to the item? Do they detract or add to its history and looks? Issued or Unissued – Was the item issued or unissued? Was the certificate a printer’s prototype usually stamped with the word “specimen”? Usually, issued certificates are more valuable and desirable. Printers – Who printed the certificate? Was it a famous printer? Type of Engraving Process – How was the certificate made? Paper – Was the paper use in the printing high quality or low quality? Has it held up over time? Does it have a watermark to prevent counterfeiting? Due to historical nature of collecting, it makes no sense to track scripophily market using stock market indices like S&P 500 Index, Dow Jones Industrial Average or others. However, apart from real time quotes there is a way to do so half-yearly based on the records of three major European market players. HSTM Historic Stocks Market Index. Wikimedia Commons has media related to Scripophily. IBSS International Bond & Share Society. About the Hobby of Collecting Old Stocks and Bonds. Scripozine Scripophily magazine (PDF, free of charge). Museo digitale della Scripofilia – Digital Museum of Scripophily. Professional Scripophily Traders Association. This item is in the category “Coins & Paper Money\Stocks & Bonds, Scripophily\Other Scripophily”. The seller is “dalebooks” and is located in this country: US. This item can be shipped worldwide.
  • Modified Item: No
  • Country/Region of Manufacture: United States
  • Type: Stock
  • Circulated/Uncirculated: Circulated

XRARE- Mississippi Valley Foremanizing Co Illinois Stock Certificate 1870 Signed